Part Number Hot Search : 
SS110 TNY380PN SMBJ4 ACNW3130 485EEN F9540 STU432S 5KE68A
Product Description
Full Text Search
 

To Download CXA1598MS Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  description the cxa1598m/s is a bipolar ic developed for recording equalizer amplifier in analog cassette decks. incorporating the filter circuit has eliminated the external inductor. also, each of the six parameters required for equalizer amplifiers can be set independently with external resistance. features inductor (coil) is unnecessary the six parameters (low frequency gain, medium frequency gain, peaking gain, medium frequency compensation frequency, peaking frequency, and q) required for recording equalizer amplifiers can be set independently with external resistance low frequency boost is possible with an external capacitor built-in recording mute function (requiring only an external time constant circuit to implement soft mute) built-in 2 channels small package applications recording equalizer amplifier for stereo analog cassette decks structure bipolar silicon monolithic ic absolute maximum ratings supply voltage v cc 17 v operating temperature topr ?0 to +75 ? storage temperature tstg ?5 to +150 ? allowable power dissipation p d (cxa1598m) 570 mw (cxa1598s) 880 mw operating conditions power supply dual power supplies (v cc ?v ee ) 6.5 to 8.0 v single power supply (v cc ) 10.0 to 16.0 v ?1 cxa1598m/s e95131a8y recording equalizer amplifier for stereo cassette decks sony reserves the right to change products and specifications without prior notice. this information does not convey any licens e by any implication or otherwise under any patents or other right. application circuits shown, if any, are typical examples illustr ating the operation of the devices. sony cannot assume responsibility for any problems arising out of the use of these circuits. cxa1598m 24 pin sop (plastic) cxa1598s 22 pin sdip (plastic)
? 2 cxa1598m/s block diagram and pin configuration cxa1598m g n d b i a s r e c e q r e c o u t 1 b o o s t 1 v e e r e c i n 1 f m d g n d f q p a r a m e t e r c o n t r o l r e c e q v c c v e e 9 1 0 1 1 2 3 4 5 6 7 8 1 1 2 2 3 2 4 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 v g s f p c a l r e c m u t e f / q i r e f r e c o u t 2 b o o s t 2 v c c r e c i n 2 g l g h c a l g p g p c a l r e c c a l g h n c n c cxa1598s g n d b i a s r e c e q r e c o u t 1 b o o s t 1 v e e r e c i n 1 f m d g n d f q p a r a m e t e r c o n t r o l r e c e q v c c v e e 9 1 0 1 1 2 3 4 5 6 7 8 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 v g s f p c a l r e c m u t e f / q i r e f r e c o u t 2 b o o s t 2 v c c r e c i n 2 g l g h c a l g p g p c a l r e c c a l g h
? 3 cxa1598m/s pin description (ta = 25 c, v cc = 7.0v, v ee = ?.0v) pin no. symbol i/o z (in) equivalent circuit description typical pin voltage dc ac 1 2 3 22 23 24 fxq f/q fm gl gh gp o connection pins of resistors for setting the recording equalizer amplifier parameters. * current input pins used to set the parameters for the recording equalizer amplifier. * setting currents for each parameter are generated by attaching resistors between these pins and the dgnd pin. 1.2v 2 7 k d g n d 1 9 2 2 3 2 2 2 3 2 4 1 ( 2 0 ) ( 2 1 ) ( 2 2 ) cxa 1598m cxa 1598s 1 2 3 20 21 22 4 fp cal i 54k peaking frequency calibration pin. * controlled with dc voltages of 0 to 5v. high = peaking frequency increased low = peaking frequency reduced * leave this pin open when not using the peaking frequency calibration function. 2.5v 5 4 k 4 1 9 ( 1 7 ) 4 19 rec cal i 54k recording level calibration pin. * controlled with dc voltages of 0 to 5v. high = recording level gain increased low = recording level gain reduced * leave this pin open when not using the recording level calibration function. connected to gnd. 2.5v 17 5 dgnd i 0.0v 5
? 4 cxa1598m/s 6 rec mute i recording mute on/off selection pin. * recording mute is controlled with dc voltages of 0 to 5v. high = recording mute off low = recording mute on * soft mute and fader can be switched over by changing the time constant of the external time constant circuit. 5.0v 3 0 k 6 6 8 17 rec in1 rec in2 i 50k recording equalizer amplifier input pin. 0.0v ?8dbv g n d 5 0 k 8 1 7 ( 1 6 ) ( 7 ) 7 16 10 15 boost1 boost2 i 9.5k connection pin of an external capacitor for low frequency boost. * when low frequency boost is unnecessary, connect to gnd for positive/negative dual power supplies; connect a capacitor (3.3 f or more) for a single power supply. 0.0v 4 . 8 k 5 . 5 k 3 5 . 5 k 2 8 0 2 8 0 3 4 k g n d ( 9 ) 1 0 1 5 ( 1 4 ) 9 14 9 gnd (vg) i connect to gnd for positive/negative dual power supplies. v cc /2 (center potential) for a single power supply. (connect a capacitor of 10 f or more) 0.0v 8 pin no. symbol i/o z (in) equivalent circuit description typical pin voltage dc ac cxa 1598m cxa 1598s
? 5 cxa1598m/s 11 v ee i connect to the negative power supply for positive/negative dual power supplies. connect to gnd for a single power supply. ?.0v 10 12 13 rec out1 rec out2 o recording equalizer amplifier output pin. 0.0v ?.0dbv 11 12 14 v cc i positive power supply connection pin. 7.0v 13 5 0 k 2 0 0 2 0 0 1 2 1 3 ( 1 1 ) ( 1 2 ) 16 iref o reference current setting pin for monolithic filter. * the reference current can be set by attaching a resistor between this pin and dgnd. 1.2v 15 ( 1 5 ) 1 6 2 7 k d g n d 1 9 2 pin no. symbol i/o z (in) equivalent circuit description typical pin voltage dc ac cxa 1598m cxa 1598s
? 6 cxa1598m/s 20 gh cal i medium frequency calibration pin. * controlled with dc voltages of 0 to 5v. high = medium frequency level gain increased low = medium frequency level gain reduced * leave this pin open when not using the medium frequency calibration function. 2.5v 5 4 k ( 1 8 ) ( 1 9 ) 2 0 2 1 18 21 gp cal i high frequency calibration pin. * controlled with dc voltages of 0 to 5v. high = high frequency level gain increased low = high frequency level gain reduced * leave this pin open when not using the high frequency calibration function. 2.5v 19 pin no. symbol i/o z (in) equivalent circuit description typical pin voltage dc ac cxa 1598m cxa 1598s
? 7 cxa1598m/s electrical characteristics (ta = 25 c, v cc = 7.0v, v ee = ?.0v) standard settings rgl: 36k//510k, rgh: 62k//220k, rgp: 36k//110k, rfm: 39k//910k, rf/q: 47k//750k, rfxq: 47k//620k recording equalizer amplifier reference output level (315hz) (this output level is the tape reference 0db which generates magnetic flux of 250nwb/m.) input level when the reference output level is 315hz, ?.0dbv (for measurement, input a 315hz, ?8.0dbv signal to the rec in pins and then measure the output level.) input a 1khz signal and set the output so that thd (total harmonic distortion) is 1%. rl = 2.7k (measure the distortion of a +11db level-up signal.) input a 1khz, 0.0db (reference input level) signal and measure the distortion. rl = 2.7k (measure the distortion as thd + n.) with no signal, measure the noise using the "a"-wgt filter. rg = 5.1k (the measured value is indicated as the relative value compared to the reference level.) with no signal, measure the dc offset voltage of the rec out pin. rec-mute = 0.5v (use a 1khz bpf.) input a 1khz signal (+12db level up) and measure the attenuation when rec mute is on. rec-mute = 2.5v input a 1khz, 0.0db (reference level) signal and measure the attenuation characteristics of the soft mute function. rec-cal = 5.0v input a 315hz signal (?0db level down) and measure the amount of change compared to when the rec-cal function is at the standard setting. rec-cal = 0.0v input a 315hz signal (?0db level down) and measure the amount of change compared to when the rec-cal function is at the standard setting. 10.0 6.5 10.0 ?9.8 11.0 57.0 ?00 ?.0 5.0 ?.5 13.6 7.0 14.0 ?.0 ?8.3 11.5 0.12 65.0 0 ?00 ?.5 6.0 ?.5 17.4 8.0 16.0 ?6.8 0.6 500 ?0 ?.0 7.0 ?.5 ma v v dbv dbv db % db mv db db db db current consumption (i cc ) operating voltage range 1 (positive/negative dual power supplies) operating voltage range 2 (single power supply) recording reference output level recording reference input level signal handling (1khz, thd = 1%, rl = 2.7k ) total harmonic distortion (1khz, 0.0db, rl = 2.7k ) s/n ratio ("a"-wgt filter) output dc offset voltage (rec out pin) mute characteristics 1 (rec-mute = 0.5v) mute characteristics 2 (rec-mute = 2.5v) rec-cal characteristics 1 (rec-cal = 5.0v) rec-cal characteristics 2 (rec-cal = 0.0v) item conditions min. typ. max. unit entire lsi recording equalizer amplifier
? 8 cxa1598m/s gh-cal = 5.0v rgh: 62k//220k, rgl ?rgp: open rfm: 300k, rf/q: 18k, rfxq: 12k input a 6.3khz signal (?0db level down) and measure the amount of change compared to when the gh-cal function is at the standard setting. gh-cal = 0.0v rgh: 62k//220k, rgl ?rgp: open rfm: 300k, rf/q: 18k, rfxq: 12k input a 6.3khz signal (?0db level down) and measure the amount of change compared to when the gh-cal function is at the standard setting. gp-cal = 5.0v rgp: 36k//110k, rgl ?rgh: open rfm: 300k, rf/q: 47k//750k, rfxq: 47k//620k input a signal (?0db level down) and measure the amount of change compared to when the gp-cal function is at the standard setting. gp-cal = 0.0v rgp: 36k//110k, rgl ?rgh: open rfm: 300k, rf/q: 47k//750k, rfxq: 47k//620k input a signal (?0db level down) and measure the amount of change compared to when the gp-cal function is at the standard setting. fp-cal = 5.0v input a signal (?0db level down) and measure the amount of change compared to when the fp-cal function is at the standard setting. fp-cal = 0.0v input a signal (?0db level down) and measure the amount of change compared to when the fp-cal function is at the standard setting. rgl: 36k//510k, rgh ?rgp: open or rgh: 62k//220k, rgl ?rgp: open rfm: 39k//910k, rf/q: 18k, rfxq: 12k rgp: 36k//110k, rgl ?rgh: open rfm: 300k, rf/q: 47k//750k, rfxq: 47k//620k 4.7 ?.5 3.9 ?.8 185 36 0.3 10 2 ? ?0 10 ?5 ?5 5.7 ?.5 5.4 ?.3 200 46 2.4 17.8 4.2 0 ? 20.5 0 0 6.7 ?.5 6.9 ?.8 215 56 10 50 7 8 11 30 15 15 db db db db % % khz khz db db db % % gh-cal characteristics 1 (gh-cal = 5.0v) gh-cal characteristics 2 (gh-cal = 0.0v) gp-cal characteristics 1 (gp-cal = 5.0v) gp-cal characteristics 2 (gp-cal = 0.0v) fp-cal characteristics 1 (fp-cal = 5.0v) fp-cal characteristics 2 (fp-cal = 0.0v) fm medium frequency compensation frequency variable width fp peaking frequency variable width peaking q variable width gl low frequency gain variable width gh medium frequency gain variable width gp peaking gain variable width fm medium frequency compensation frequency deviation fp peaking frequency deviation recording equalizer amplifier item conditions min. typ. max. unit
? 9 cxa1598m/s rgp: 36k//110k, rgl ? rgh: open rfm: 300k, rf/q: 47k//750k, rfxq: 47k//620k rgp: 36k//510k, rgh ? rgp: open rfm: 9.1k, rf/q: 18k, rfxq: 12k rgh: 62k//220k, rgl ? rgp: open rfm: 300k, rf/q: 18k, rfxq: 12k rgp: 36k//110k, rgl ? rgh: open rfm: 300k, rf/q: 47k//750k, rfxq: 47k//620k pins 8 and 17 (cxa1598m) pins 7 and 16 (cxa1598s) ?0 ?.5 ?.8 ?.0 40 0 0 0 0 50 20 0.5 0.8 2.0 60 % db db db k peaking q deviation gl low frequency gain deviation gh medium frequency gain deviation gp peaking gain deviation input impedance recording equalizer amplifier note: unless otherwise specified, rgl, rgh, rgp, rfm, rf/q, and rfxq settings are the characteristics when set to the standard settings. item conditions min. typ. max. unit
? 10 cxa1598m/s electrical characteristics measurement circuit (cxa1598s) r e c o u t 2 v c c b o o s t 2 i r e f r e c i n 2 r e c c a l g h c a l g p c a l r e c o u t 1 v e e b o o s t 1 g n d r e c i n 1 r e c m u t e d g n d f p c a l c x a 1 5 9 8 s a d c 5 v s u p p l y p o w e r s u p p l y a p o w e r s u p p l y a u d i o s g d c a m m e t e r d c a m m e t e r g n d r 2 4 * 3 6 k / / 3 0 0 k c 1 0 . 1 r 2 8 1 k s 2 0 d c v o l t m e t e r a c v o l t m e t e r d i s t o r t i o n a n a l y z e r o s c i l l o s c o p e " a " w t g d i n a u d i o 1 k h z b p f n o i s e f i l t e r 1 . r e s i s t o r t o l e r a n c e 2 . c a p a c i t o r t o l e r a n c e c o u p l i n g c a p a c i t o r 5 % 1 % 5 % 2 % 1 0 % * : * : s 3 7 2 c h 1 c h s 3 8 f i l t e r o u t i n s 4 1 s 4 0 s 3 9 r 2 3 * 6 2 0 s 1 8 c 3 1 0 5 0 v r 2 5 * 3 6 k / / 3 0 0 k c 2 0 . 1 s 1 9 c 4 1 0 5 0 v r 2 7 5 0 k r 3 3 1 k s 3 6 2 c h 1 c h c 5 1 2 5 v s 2 3 c 8 1 2 5 v c 1 0 2 . 2 5 0 v r 3 5 * 5 . 1 k s 2 5 c 1 2 1 0 0 2 5 v s 2 7 c 1 3 * 0 . 4 7 s 2 8 c 1 5 1 0 0 c 1 7 4 . 7 5 0 v r 4 1 1 0 0 r 3 8 * 2 . 7 k s 3 0 r 4 0 1 0 k s 3 2 s 3 3 r 4 3 1 0 k s 3 5 r 3 9 * 2 . 7 k s 3 1 c 1 8 4 . 7 5 0 v r 4 2 1 0 0 s 3 4 c 1 6 1 0 0 s 2 9 c 1 4 * 0 . 4 7 r 3 7 * 2 7 k r 3 6 * 5 . 1 k s 2 6 c 1 1 2 . 2 5 0 v c 9 1 2 5 v s 2 4 s 2 2 s 2 1 c 7 1 2 5 v r 2 9 1 k c 6 1 2 5 v r 3 0 5 0 k r 3 2 5 0 k r 2 6 5 0 k r 3 1 1 k r 3 4 1 k s 1 r 1 1 * 1 6 0 k r 1 2 * 1 6 0 k r 1 0 * 3 9 k r 8 * 3 6 k / / 1 1 0 k r 9 * 6 . 8 k r 7 * 1 0 0 k r 5 * 6 2 k / / 2 2 0 k r 6 * 6 . 8 k r 4 * 1 1 0 k r 2 * 3 6 k / / 5 1 0 k r 3 * 1 0 k r 1 * 6 2 k r 1 6 * 5 . 1 k r 1 7 * 3 3 k r 1 3 * 3 9 k r 1 4 * 4 7 k / / 7 5 0 k r 2 2 * 9 . 1 k r 2 0 * 3 0 0 k r 1 8 * 1 8 k r 1 9 * 1 2 k r 1 5 * 4 7 k / / 6 2 0 k r 2 1 * 3 9 k / / 9 1 0 k s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 s 1 0 s 1 1 s 1 2 s 1 3 s 1 4 s 1 5 s 1 6 s 1 7 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 9 1 0 1 1 2 3 4 5 6 7 8 1 g l g h g p f m f / q f q n o t e .
? 11 cxa1598m/s electrical characteristics measurement circuit (cxa1598m) r e c o u t 2 v c c b o o s t 2 i r e f r e c i n 2 r e c c a l g h c a l g p c a l r e c o u t 1 v e e b o o s t 1 g n d r e c i n 1 r e c m u t e d g n d f p c a l c x a 1 5 9 8 m a d c 5 v s u p p l y p o w e r s u p p l y a p o w e r s u p p l y a u d i o s g d c a m m e t e r d c a m m e t e r g n d r 2 4 * 3 6 k / / 3 0 0 k c 1 0 . 1 r 2 8 1 k s 2 0 d c v o l t m e t e r a c v o l t m e t e r d i s t o r t i o n a n a l y z e r o s c i l l o s c o p e " a " w t g d i n a u d i o 1 k h z b p f n o i s e f i l t e r 1 . r e s i s t o r t o l e r a n c e 2 . c a p a c i t o r t o l e r a n c e c o u p l i n g c a p a c i t o r 5 % 1 % 5 % 2 % 1 0 % * : * : s 3 7 2 c h 1 c h s 3 8 f i l t e r o u t i n s 4 1 s 4 0 s 3 9 r 2 3 * 6 2 0 s 1 8 c 3 1 0 5 0 v r 2 5 * 3 6 k / / 3 0 0 k c 2 0 . 1 s 1 9 c 4 1 0 5 0 v r 2 7 5 0 k r 3 3 1 k s 3 6 2 c h 1 c h c 5 1 2 5 v s 2 3 c 8 1 2 5 v c 1 0 2 . 2 5 0 v r 3 5 * 5 . 1 k s 2 5 c 1 2 1 0 0 2 5 v s 2 7 c 1 3 * 0 . 4 7 s 2 8 c 1 5 1 0 0 c 1 7 4 . 7 5 0 v r 4 1 1 0 0 r 3 8 * 2 . 7 k s 3 0 r 4 0 1 0 k s 3 2 s 3 3 r 4 3 1 0 k s 3 5 r 3 9 * 2 . 7 k s 3 1 c 1 8 4 . 7 5 0 v r 4 2 1 0 0 s 3 4 c 1 6 1 0 0 s 2 9 c 1 4 * 0 . 4 7 r 3 7 * 2 7 k r 3 6 * 5 . 1 k s 2 6 c 1 1 2 . 2 5 0 v c 9 1 2 5 v s 2 4 s 2 2 s 2 1 c 7 1 2 5 v r 2 9 1 k c 6 1 2 5 v r 3 0 5 0 k r 3 2 5 0 k r 2 6 5 0 k r 3 1 1 k r 3 4 1 k s 1 r 1 1 * 1 6 0 k r 1 2 * 1 6 0 k r 1 0 * 3 9 k r 8 * 3 6 k / / 1 1 0 k r 9 * 6 . 8 k r 7 * 1 0 0 k r 5 * 6 2 k / / 2 2 0 k r 6 * 6 . 8 k r 4 * 1 1 0 k r 2 * 3 6 k / / 5 1 0 k r 3 * 1 0 k r 1 * 6 2 k r 1 6 * 5 . 1 k r 1 7 * 3 3 k r 1 3 * 3 9 k r 1 4 * 4 7 k / / 7 5 0 k r 2 2 * 9 . 1 k r 2 0 * 3 0 0 k r 1 8 * 1 8 k r 1 9 * 1 2 k r 1 5 * 4 7 k / / 6 2 0 k r 2 1 * 3 9 k / / 9 1 0 k s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 s 1 0 s 1 1 s 1 2 s 1 3 s 1 4 s 1 5 s 1 6 s 1 7 1 3 1 4 1 5 1 6 1 7 1 9 2 0 2 1 2 2 2 3 2 4 1 0 1 1 1 2 2 3 4 5 6 8 9 1 g l g h g p f m f / q n o t e . 7 1 8 n c n c f q
? 12 cxa1598m/s application circuit for positive/negative dual power supplies (cxa1598s) c 7 3 . 3 5 0 v r 4 5 1 2 k c 9 1 5 0 p l 1 2 7 m h c 1 1 7 5 p g n d g n d g n d l i n e i n 1 c 1 3 . 3 5 0 v r 3 9 1 0 k r 3 7 1 0 k r 4 1 5 . 6 k r e c o u t 1 ( t o h e a d ) c x a 1 5 9 8 s r 3 0 r 2 9 r 2 8 r 2 7 r 2 6 r 2 4 r 2 3 r 2 2 r 2 1 r 2 0 r 1 7 r 1 6 r 1 5 r 1 4 r 1 3 r 1 1 r 1 0 r 9 r 8 r 7 r 5 r 4 r 3 r 2 r 1 r 1 8 r 1 2 r 6 r 2 5 r 1 9 r 3 6 r 3 5 r 3 4 r 3 3 r 3 2 r 3 1 t y p e i n o r m a l c 3 0 . 4 7 r e c m u t e ( s o f t m u t e / f a d e r ) g n d t y p e i i c r o 2 t y p e i v m e t a l h i g h s p e e d n o r m a l s p e e d g n d f p c a l ( d c c o n t r o l ) r e c o u t 2 ( t o h e a d ) g n d c 1 2 7 5 p l 2 2 7 m h c 1 0 1 5 0 p r 4 6 1 2 k c 8 3 . 3 5 0 v b i a s o s c r 4 2 5 . 6 k c 4 0 . 4 7 g n d r 3 8 1 0 k r 4 0 1 0 k c 2 3 . 3 5 0 v v c c c 5 1 0 0 2 5 v g n d g n d r e c o u t 1 b o o s t 1 v e e r e c i n 1 f m d g n d f q f p c a l r e c m u t e f / q i r e f r e c o u t 2 b o o s t 2 v c c r e c i n 2 g l g h c a l g p g p c a l r e c c a l g h l i n e i n 2 r e c c a l ( d c c o n t r o l ) g h c a l ( d c c o n t r o l ) g p c a l ( d c c o n t r o l ) 9 1 0 1 1 2 3 4 5 6 7 8 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 g h g l f q f / q f m g p r 4 4 2 7 k v e e c 5 1 0 0 2 5 v application circuits shown are typical examples illustrating the operation of the devices. sony cannot assume responsibility fo r any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same .
? 13 cxa1598m/s application circuit for positive/negative dual power supplies (cxa1598m) c 7 3 . 3 5 0 v r 4 5 1 2 k c 9 1 5 0 p l 1 2 7 m h c 1 1 7 5 p g n d g n d g n d l i n e i n 1 c 1 3 . 3 5 0 v r 3 9 1 0 k r 3 7 1 0 k r 4 1 5 . 6 k r e c o u t 1 ( t o h e a d ) c x a 1 5 9 8 m r 3 0 r 2 9 r 2 8 r 2 7 r 2 6 r 2 4 r 2 3 r 2 2 r 2 1 r 2 0 r 1 7 r 1 6 r 1 5 r 1 4 r 1 3 r 1 1 r 1 0 r 9 r 8 r 7 r 5 r 4 r 3 r 2 r 1 r 1 8 r 1 2 r 6 r 2 5 r 1 9 r 3 6 r 3 5 r 3 4 r 3 3 r 3 2 r 3 1 t y p e i n o r m a l c 3 0 . 4 7 r e c m u t e ( s o f t m u t e / f a d e r ) g n d t y p e i i c r o 2 t y p e i v m e t a l h i g h s p e e d n o r m a l s p e e d g n d f p c a l ( d c c o n t r o l ) r e c o u t 2 ( t o h e a d ) g n d c 1 2 7 5 p l 2 2 7 m h c 1 0 1 5 0 p r 4 6 1 2 k c 8 3 . 3 5 0 v b i a s o s c r 4 2 5 . 6 k c 4 0 . 4 7 g n d r 3 8 1 0 k r 4 0 1 0 k c 2 3 . 3 5 0 v v c c c 5 1 0 0 2 5 v g n d g n d r e c o u t 1 b o o s t 1 v e e r e c i n 1 f m d g n d f q f p c a l r e c m u t e f / q i r e f r e c o u t 2 b o o s t 2 v c c r e c i n 2 g l g h c a l g p g p c a l r e c c a l g h l i n e i n 2 r e c c a l ( d c c o n t r o l ) g h c a l ( d c c o n t r o l ) g p c a l ( d c c o n t r o l ) 1 0 1 1 1 2 2 3 4 5 6 8 9 1 1 3 1 4 1 5 1 6 1 7 1 8 2 0 2 1 2 2 2 3 2 4 g h g l f q f / q f m g p r 4 4 2 7 k v e e c 5 1 0 0 2 5 v 1 9 n c 7 n c application circuits shown are typical examples illustrating the operation of the devices. sony cannot assume responsibility fo r any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same .
? 14 cxa1598m/s application circuit for a single power supply (cxa1598s) c 7 3 . 3 5 0 v r 4 5 1 2 k c 9 1 5 0 p l 1 2 7 m h c 1 1 7 5 p g n d g n d g n d l i n e i n 1 c 1 1 0 2 5 v c 1 3 . 3 5 0 v r 3 9 1 0 k r 3 7 1 0 k r 4 1 5 . 6 k r e c o u t 1 ( t o h e a d ) c x a 1 5 9 8 s r 3 0 r 2 9 r 2 8 r 2 7 r 2 6 r 2 4 r 2 3 r 2 2 r 2 1 r 2 0 r 1 7 r 1 6 r 1 5 r 1 4 r 1 3 r 1 1 r 1 0 r 9 r 8 r 7 r 5 r 4 r 3 r 2 r 1 r 1 8 r 1 2 r 6 r 2 5 r 1 9 r 3 6 r 3 5 r 3 4 r 3 3 r 3 2 r 3 1 t y p e i n o r m a l c 3 0 . 4 7 r e c m u t e ( s o f t m u t e / f a d e r ) g n d t y p e i i c r o 2 t y p e i v m e t a l h i g h s p e e d n o r m a l s p e e d g n d f p c a l ( d c c o n t r o l ) r e c o u t 2 ( t o h e a d ) g n d c 1 2 7 5 p l 2 2 7 m h c 1 0 1 5 0 p r 4 6 1 2 k c 8 3 . 3 5 0 v b i a s o s c r 4 2 5 . 6 k c 4 0 . 4 7 g n d r 3 8 1 0 k r 4 0 1 0 k c 2 3 . 3 5 0 v v c c c 5 1 0 0 2 5 v g n d g n d r e c o u t 1 b o o s t 1 v e e r e c i n 1 f m d g n d f q f p c a l r e c m u t e f / q i r e f r e c o u t 2 b o o s t 2 v c c r e c i n 2 g l g h c a l g p g p c a l r e c c a l g h l i n e i n 2 r e c c a l ( d c c o n t r o l ) g h c a l ( d c c o n t r o l ) g p c a l ( d c c o n t r o l ) 9 1 0 1 1 2 3 4 5 6 7 8 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 g h g l f q f / q f m g p r 4 4 2 7 k application circuits shown are typical examples illustrating the operation of the devices. sony cannot assume responsibility fo r any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same .
? 15 cxa1598m/s application circuit for a single power supply (cxa1598m) c 7 3 . 3 5 0 v r 4 5 1 2 k c 9 1 5 0 p l 1 2 7 m h c 1 1 7 5 p g n d g n d g n d l i n e i n 1 c 1 1 0 2 5 v c 1 3 . 3 5 0 v r 3 9 1 0 k r 3 7 1 0 k r 4 1 5 . 6 k r e c o u t 1 ( t o h e a d ) c x a 1 5 9 8 m r 3 0 r 2 9 r 2 8 r 2 7 r 2 6 r 2 4 r 2 3 r 2 2 r 2 1 r 2 0 r 1 7 r 1 6 r 1 5 r 1 4 r 1 3 r 1 1 r 1 0 r 9 r 8 r 7 r 5 r 4 r 3 r 2 r 1 r 1 8 r 1 2 r 6 r 2 5 r 1 9 r 3 6 r 3 5 r 3 4 r 3 3 r 3 2 r 3 1 t y p e i n o r m a l c 3 0 . 4 7 r e c m u t e ( s o f t m u t e / f a d e r ) g n d t y p e i i c r o 2 t y p e i v m e t a l h i g h s p e e d n o r m a l s p e e d g n d f p c a l ( d c c o n t r o l ) r e c o u t 2 ( t o h e a d ) g n d c 1 2 7 5 p l 2 2 7 m h c 1 0 1 5 0 p r 4 6 1 2 k c 8 3 . 3 5 0 v b i a s o s c r 4 2 5 . 6 k c 4 0 . 4 7 g n d r 3 8 1 0 k r 4 0 1 0 k c 2 3 . 3 5 0 v v c c c 5 1 0 0 2 5 v g n d g n d r e c o u t 1 b o o s t 1 v e e r e c i n 1 f m d g n d f q f p c a l r e c m u t e f / q i r e f r e c o u t 2 b o o s t 2 v c c r e c i n 2 g l g h c a l g p g p c a l r e c c a l g h l i n e i n 2 r e c c a l ( d c c o n t r o l ) g h c a l ( d c c o n t r o l ) g p c a l ( d c c o n t r o l ) 1 0 1 1 1 2 2 3 4 5 6 8 9 1 1 3 1 4 1 5 1 6 1 7 1 9 2 0 2 1 2 2 2 3 2 4 g h g l f q f / q f m g p r 4 4 2 7 k 7 n c 1 8 n c application circuits shown are typical examples illustrating the operation of the devices. sony cannot assume responsibility fo r any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same .
? 16 cxa1598m/s description of operation 1. recording equalizer amplifier the primary features of the cxa1598 recording equalizer amplifier are that by taking full advantage of monolithic filter technology, an lc resonance circuit consisting of a coil and capacitor normally required for high frequency compensation is dispensed with and medium and low frequency sensitivity compensation is performed with its internal filter alone. in addition, the six parameters (low frequency gain, medium frequency gain, peaking gain, medium frequency compensation frequency, peaking frequency, and q) required for recording equalizer amplifiers can be set as desired simply by attaching resistors to the gl, gh, gp, fm, f/q, and fxq pins. this ic has the circuit configuration shown in fig. 1 to provide the optimum frequency response required for recording equalizer amplifiers. 2 7 m h g n d g n d g n d r 1 0 5 0 k v c c g m 2 1 1 g m 1 g m 4 o p 3 1 o p 2 o p 1 v g s r 1 4 3 4 k r 1 2 3 5 k r 1 5 4 . 8 k c 2 0 . 4 7 g n d c 3 2 0 0 p r 1 3 5 . 5 k r 2 0 4 0 k g n d r 2 1 5 0 k r 1 9 2 4 k r 1 8 8 k c 5 1 0 0 p g n d c 4 1 0 0 p r 1 6 2 0 k r 1 7 2 0 k v g s v g s g m 3 v g s b i a s p a r a m e t e r 6 d b v 6 d b v + 6 d b v 3 d b v 7 d b v 7 d b v 0 d b v r e c i n 1 8 d b v v c c v e e g n d i r e f d g n d v e e d g n d r 9 2 7 k g n d r e c h e a d b i a s o s c c 8 7 5 p r 2 3 1 2 k c 6 3 . 3 c 7 1 5 0 p c o n t r o l r e c m u t e d v c c r 2 4 5 0 k b o o s t g n d r 2 8 . 2 k r 1 1 0 k c 1 2 . 2 g l g h g p f m f / q f q d g n d r 3 r f q r 4 r f / q r 5 r f m r 6 r g p r 7 r g h r 8 r g l g p c a l c a l i b r a t i o n f p c a l g h c a l r e c c a l r e c o u t g n d d g n d r 2 5 5 0 k t o c o n t r o l i c r 2 6 5 0 k r 2 2 5 0 k r 1 1 5 k b o o s t f r o m l i n e i n d g n d fig. 1. cxa1598m/s functional circuit block diagram 2. low frequency boost the cxa1598 implements low frequency boost simply by attaching an external capacitor to the boost pins. signals are boosted by approximately 6db. the boost cut-off frequency can be freely set with the value of the external capacitor. f 2 f 1 g a i n [ d b ] f r e q u e n c y [ h z ] 6 d b o c t fig. 2. cxa1598m/s low frequency boost frequency response
? 17 cxa1598m/s 3. recording mute function the cxa1598 contains a built-in recording mute circuit which varies the recording equalizer amplifier gain according to the magnitude of the dc voltage applied to the rec mute pin just like an electronic volume control. also, any desired soft mute or fader can be freely set depending on momentary changes in the dc voltage applied to the rec mute pin. fig. 3 illustrates the recording mute waveforms. fig. 3. recording mute waveform 4. recording level calibration function the cxa1598 allows the recording level to be finely adjusted with a dc voltage. the recording equalizer amplifier gain can be varied by approximately 5db simply by applying a dc voltage to the rec cal pin. when not using the recording level calibration function, simply leave the rec cal pin open, and the rec cal pin is matched to the internal reference voltage (2.5v), with the recording level set for the standard output gain. 5. medium frequency equalizer amplifier calibration function the cxa1598 allows the medium frequency equalizer amplifier characteristics to be finely adjusted with a dc voltage. by simply applying a dc voltage to the gh cal pin, the medium frequency equalizer amplifier gain can be varied by approximately 4db. when not using this calibration function, simply leave the gh cal pin open, and the gh cal pin is matched to the internal reference voltage (2.5v), with the medium frequency equalizer amplifier characteristics set for the standard output gain. 6. high frequency equalizer amplifier calibration function the cxa1598 allows the high frequency equalizer amplifier characteristics to be finely adjusted with a dc voltage. by simply applying a dc voltage to the gp cal pin, the high frequency equalizer amplifier gain can be varied by approximately 4db. also, when not using this calibration function, simply leave the gp cal pin open, and the gp cal pin is matched to the internal reference voltage (2.5v), with the high frequency equalizer amplifier characteristics set for the standard output gain. 7. fp peaking frequency calibration function the cxa1598 allows the fp peaking frequency to be finely adjusted with a dc voltage. by simply applying a dc voltage to the fp cal pin, the fp peaking frequency can be varied by approximately 46% to 200%. also, when not using this calibration function, simply leave the fp cal pin open, and the fp cal pin is matched to the internal reference voltage (2.5v), with the fp peaking frequency response set for the standard fp peaking frequency.
? 18 cxa1598m/s f p c a l f p r e c c a l g a i n [ d b ] f r e q u e n c y [ h z ] r e c c a l r e c c a l g p c a l g p c a l g p c a l r e c c a l r e c c a l g h c a l g h c a l g h c a l fig. 4. conceptual diagram of recording level/medium frequency equalizer amplifier/high frequency equalizer amplifier/fp peaking frequency calibration functions control voltage for each control pin pin no. pin name pin voltage [v], referenced to dgnd 0.0 0.5 2.5 4.5 5.0 reduce < < < < < < < < increase 46 200 reduce < < < < < < < < increase ?00 ?.5 reduce < < < < < < < < increase ?.5 6.0 reduce < < < < < < < < increase ?.5 5.7 reduce < < < < < < < < increase ?.2 5.4 remarks 4 (4) 6 (6) 17 (19) 18 (20) 19 (21) fp cal rec mute rec cal gh cal gp cal amount of fp peaking frequency change [%] compared to when fp cal is at the standard setting. rec out attenuation [db] compared to when rec mute is at the standard setting. f = 1khz amount of change [db] compared to when rec cal is at the standard setting. f = 315hz amount of gh medium frequency gain change [db] compared to rgh standard. rgl, rgp: open amount of gp peaking frequency gain change [db] compared to rgp standard. rgl, rgh: open
? 19 cxa1598m/s r 4 4 2 7 k c x a 1 5 9 8 s g n d d g n d f m f q f / q i r e f g l g p g h r 3 0 r 2 9 r 2 8 r 2 7 r 2 6 r 2 4 r 2 3 r 2 2 r 2 1 r 2 0 r 1 7 r 1 6 r 1 5 r 1 4 r 1 3 r 1 1 r 1 0 r 9 r 8 r 7 r 5 r 4 r 3 r 2 r 1 r 1 8 r 1 2 r 6 r 2 5 r 1 9 r 3 6 r 3 5 r 3 4 r 3 3 r 3 2 r 3 1 g h g l f q f / q f m g p 2 1 1 5 2 1 2 2 5 3 2 0 5 v s s i n h v e e 7 6 4 c o m 3 c a b 0 2 v d d 1 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 2 3 4 5 6 7 8 1 4 0 5 1 b v d d v e e s p e e d h i g h / n o r m t y p e i v / i , i i 7 0 s / 1 2 0 s r 4 4 2 7 k c x a 1 5 9 8 s g n d d g n d f m f q f / q i r e f g l g p g h r 3 0 r 2 9 r 2 8 r 2 7 r 2 6 r 2 4 r 2 3 r 2 2 r 2 1 r 2 0 r 1 7 r 1 6 r 1 5 r 1 4 r 1 3 r 1 1 r 1 0 r 9 r 8 r 7 r 5 r 4 r 3 r 2 r 1 r 1 8 r 1 2 r 6 r 2 5 r 1 9 r 3 6 r 3 5 r 3 4 r 3 3 r 3 2 r 3 1 g h g l f q f / q f m g p 2 1 1 5 2 1 2 2 5 3 2 0 5 v s s i n h v e e 7 6 4 c o m 3 c a b 0 2 v d d 1 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 2 3 4 5 6 7 8 1 4 0 5 1 b v d d s p e e d h i g h / n o r m t y p e i v / i , i i 7 0 s / 1 2 0 s 8. mode control methods refer to the application circuits shown in figs. 5 and 6 for mode control methods using a manual switch. when tape mode is implemented with logic, use the same ground for the 27k resistance connected to the common pin (analog switch connection) of the used analog switch ic and to the dgnd and iref pins. figs. 5 and 6 show examples when using the 4051b (8-channel multiplexer/demultiplexer). fig. 5. for positive/negative dual power supplies fig. 6. for a single power supply 9. temperature characteristics and accuracy of the recording equalizer amplifier the temperature and cut-off frequency of the cxa1598 depend on the external resistance connected to the iref, gl, gh, gp, fm, f/q, and fxq pins. for low frequency boost, however, the cut-off frequency becomes uneven depending on the temperature characteristics or unevenness of the internal resistance since its time constant is configured by the product of an external capacitor and the internal resistance. also, the recording equalizer amplifier frequency response depends on unevenness in the absolute, as well as relative values of the internal capacitance. furthermore, the high frequency response indicates a high element sensitivity at the filter because the band-pass filter q is high. compared to low frequency, although the unevenness inherent in the ic is more likely to occur, this occurs relatively, and not individually for channels 1 and 2.
? 20 cxa1598m/s v cc 14pin (13pin) v ee 11pin (10pin) gnd 9pin (8pin) positive/negative dual power supplies single power supply positive power supply power supply negative power supply gnd gnd * dgnd 5pin (5pin) gnd gnd notes on operation 1. power supply the cxa1598 is designed basically for positive/negative dual power supplies, and can also operate with a single power supply. connect the power supplies for each case as shown below: pin nos. in parentheses are those for the cxa1598s. * for a single power supply, connect a decoupling capacitor (10 f or more) to the gnd (vg) pin. the ripple rejection ratio depends on the capacitance of this capacitor. 2. low frequency boost the cxa1598 can implement low frequency boost simply by connecting a capacitor to the boost pins. although the boost is fixed to 6db, the time constant which determines the cut-off frequency can be set to any desired value depending on the external capacitor. the pole (f 1 ) and zero (f 2 ) shown in fig. 3. low frequency boost frequency response can be expressed, with the external capacitor assumed to be c b , as follows: f 1 = = = [hz] = = [hz] when not using low frequency boost, follow the procedure described below. for positive/negative dual power supplies connect the boost pins to gnd. for single power supply connect a fairly large capacitor (3.3 f or more) to the boost pins or simply leave the boost pins open. if the boost pins are left open, note that the output level increases by 6db, so the input level should be set 6db down. the cxa1598 is basically designed for positive/negative dual power supplies and the boost pins cannot be easily connected to gnd as in the case of positive/negative dual power supplies. 3. resistance connected to the iref pin as well as the gl, gh, gp, fm, f/q, and fxq pins the recording equalizer amplifier frequency response is determined by the resistance connected to the iref pin as well as the gl, gh, gp, fm, f/q, and fxq pins. this means that the accuracy of the recording equalizer amplifier frequency response is determined by the resistance connected to these pins. therefore, the resistors used for this purpose must be free of unevenness and have excellent temperature characteristics (e.g., a metallic film resistor). r13 + r14 2 ?c b ?(r13 ?r14 + r14 ?r15 + r15 ?r13) 1 2 ?c b ?(r13 ?r14 / (r13 + r14) + r15) 1 2 ?c b ?(9.53k ) 1 2 ?c b ?(4.8k ) 1 2 ?c b ?r15
? 21 cxa1598m/s v c c , v e e = 7 v r g l o p e n r f m 3 0 0 k r f / q 4 7 k / / 7 5 0 k r f q 4 7 k / / 6 2 0 k 0 d b = 3 1 5 h z , 2 3 d b v ( 2 0 d b ) r g h o p e n r g h 3 1 . 5 k r g l g a i n c h a r a c t e r i s t i c s r g l [ w ] 1 k g l [ d b ] 2 5 2 0 1 5 1 0 5 0 5 1 0 1 5 2 0 1 0 k 1 0 0 k 1 m v c c , v e e = 7 v r g h o p e n r g p o p e n r f m 9 . 1 k r f / q 1 8 k r f q 1 2 k 0 d b = 3 1 5 h z , 2 3 d b v ( 2 0 d b ) f = 1 k h z r g h g a i n c h a r a c t e r i s t i c s r g h [ w ] 1 k g h [ d b ] 2 5 2 0 1 5 1 0 5 0 5 1 0 1 5 2 0 1 0 k 1 0 0 k 1 m v c c , v e e = 7 v r g h o p e n r g p o p e n r f m 3 0 0 k r f / q 1 8 k r f q 1 2 k 0 d b = 3 1 5 h z , 2 3 d b v ( 2 0 d b ) f = 1 k h z r g p g a i n c h a r a c t e r i s t i c s r g p [ w ] 1 k g p [ d b ] 5 4 0 3 5 3 0 2 5 2 0 1 5 1 0 5 0 1 0 k 1 0 0 k 1 m r f m c u t - o f f f r e q u e n c y c h a r a c t e r i s t i c s r f m [ w ] 1 k f m [ h z ] 1 0 0 1 0 0 k 1 0 k 1 k 1 0 k 1 0 0 k 1 m v c c , v e e = 7 v r g l 3 6 k / / 5 1 0 k r g h o p e n r g p o p e n r f / q 1 8 k r f q 1 2 k r f x q c u t - o f f f r e q u e n c y c h a r a c t e r i s t i c s r f q [ w ] 1 k f q [ h z ] 1 k 1 m 1 0 0 k 1 0 k 1 0 k 1 0 0 k 1 m r f / q c u t - o f f f r e q u e n c y c h a r a c t e r i s t i c s r f / q [ w ] 1 k f / q [ h z ] 1 0 0 1 0 0 k 1 0 k 1 k 1 0 k 1 0 0 k 1 m v c c , v e e = 7 v r g l o p e n r g h o p e n r g p 3 6 k / / 1 1 0 k r f m 3 0 0 k r f q 3 7 . 4 k v c c , v e e = 7 v r g l o p e n r g h o p e n r g p 3 6 k / / 1 1 0 k r f m 3 0 0 k r f / q 3 8 . 6 k example of representative characteristics
? 22 cxa1598m/s o u t p u t l e v e l v s . m u t e c h a r a c t e r i s t i c s 1 r e c m u t e p i n v o l t a g e [ v ] 0 . 0 o u t p u t l e v e l [ % ] 0 v c c , v e e = 7 v r g l 3 6 k / / 5 1 0 k r g h 6 2 k / / 2 2 0 k r g p 3 6 k / / 1 1 0 k r f m 3 9 k / / 9 1 0 k r f / q 4 7 k / / 7 5 0 k r f q 4 7 k / / 6 2 0 k 1 0 0 % = 1 k h z , + 1 2 d b ( a t 3 1 5 h z , 3 d b v ) f = 1 k h z 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 6 . 0 7 . 0 2 0 4 0 6 0 8 0 1 0 0 o u t p u t l e v e l v s . m u t e c h a r a c t e r i s t i c s 2 r e c m u t e p i n v o l t a g e [ v ] 0 . 0 o u t p u t l e v e l [ d b ] 1 0 0 v c c , v e e = 7 v r g l 3 6 k / / 5 1 0 k r g h 6 2 k / / 2 2 0 k r g p 3 6 k / / 1 1 0 k r f m 3 9 k / / 9 1 0 k r f / q 4 7 k / / 7 5 0 k r f q 4 7 k / / 6 2 0 k 0 d b = 1 k h z , + 1 2 d b ( a t 3 1 5 h z , 3 d b v ) f = 1 k h z 1 . 0 2 . 0 3 . 0 4 . 0 5 . 0 6 . 0 7 . 0 8 0 6 0 4 0 2 0 0 o u t p u t l e v e l v s . m u t e c h a r a c t e r i s t i c s 3 r e c m u t e p i n v o l t a g e [ v ] o u t p u t l e v e l [ d b ] v c c , v e e = 7 v r g l 3 6 k / / 5 1 0 k r g h 6 2 k / / 2 2 0 k r g p 3 6 k / / 1 1 0 k r f m 3 9 k / / 9 1 0 k r f / q 4 7 k / / 7 5 0 k r f q 4 7 k / / 6 2 0 k 0 d b = 1 k h z , + 1 2 d b ( a t 3 1 5 h z , 3 d b v ) f = 1 k h z 0 . 5 1 . 0 8 0 6 0 4 0 2 0 0 5 . 0 1 0 . 0 c u r r e n t c o n s u m p t i o n v s . s u p p l y v o l t a g e p o s i t i v e / n e g a t i v e d u a l p o w e r s u p p l i e s r g l 3 6 k / / 5 1 0 k r g h 6 2 k / / 2 2 0 k r g p 3 6 k / / 1 1 0 k r f m 3 9 k / / 9 1 0 k r f / q 4 7 k / / 7 5 0 k r f q 4 7 k / / 6 2 0 k s u p p l y v o l t a g e [ v ] 3 i c c / i e e [ m a ] 1 1 1 4 1 3 1 2 1 1 4 5 6 7 8 9 1 0 i c c i e e
? 23 cxa1598m/s t o t a l h a r m o n i c d i s t o r t i o n o u t p u t l e v e l [ d b ] 1 0 t . h . d + n [ % ] 1 0 1 . 0 0 . 1 0 1 0 2 0 v c c , v e e = 7 v r g l 3 6 k / / 5 1 0 k r g h 6 2 k / / 2 2 0 k r g p 3 6 k / / 1 1 0 k r f m 3 9 k / / 9 1 0 k r f / q 4 7 k / / 7 5 0 k r f q 4 7 k / / 6 2 0 k 0 d b = 3 d b v r l = 2 . 7 k w 3 1 5 h z 1 k h z 3 k h z 6 . 3 k h z 1 0 k h z 1 5 k h z l o a d c h a r a c t e r i s t i c s m a x i m u m o u t p u t l e v e l [ d b ] 0 r l l o a d r e s i s t a n c e [ w ] 1 0 0 5 1 0 1 5 1 k 1 0 k o u t p u t l e v e l v s . r e c c a l v o l t a g e r e c c a l p i n v o l t a g e [ v ] o u t p u t l e v e l [ d b ] v c c , v e e = 7 v r g l 3 6 k / / 5 1 0 k r g h 6 2 k / / 2 2 0 k r g p 3 6 k / / 1 1 0 k r f m 3 9 k / / 9 1 0 k r f / q 4 7 k / / 7 5 0 k r f q 4 7 k / / 6 2 0 k 0 d b = r e c c a l p i n 2 . 5 v , 2 0 d b ( a t 3 1 5 h z , 3 d b v ) 2 . 0 1 . 0 8 4 0 4 8 4 . 0 7 . 0 2 2 6 6 1 . 0 0 . 0 2 . 0 3 . 0 5 . 0 6 . 0 v c c , v e e = 7 v r g l 3 6 k / / 5 1 0 k r g h 6 2 k / / 2 2 0 k r g p 3 6 k / / 1 1 0 k r f m 3 9 k / / 9 1 0 k r f / q 4 7 k / / 7 5 0 k r f q 4 7 k / / 6 2 0 k 0 d b = 3 d b v t h d + n = 1 % 3 1 5 h z 1 k h z 3 1 5 h z 8 k h z
? 24 cxa1598m/s o u t p u t l e v e l v s . g h c a l v o l t a g e g h c a l p i n v o l t a g e [ v ] o u t p u t l e v e l [ d b ] 4 0 4 6 2 2 6 2 . 0 1 . 0 4 . 0 7 . 0 1 . 0 0 . 0 2 . 0 3 . 0 5 . 0 6 . 0 o u t p u t l e v e l v s . g p c a l v o l t a g e g p c a l p i n v o l t a g e [ v ] o u t p u t l e v e l [ d b ] 4 0 4 6 2 2 6 3 k h z 8 k h z 1 2 k h z 1 2 k h z s e t t i n g 1 r g l 3 6 k / / 5 1 0 k r g h 6 2 k / / 2 2 0 k r g p 3 6 k / / 1 1 0 k r f m 3 9 k / / 9 1 0 k r f / q 4 7 k / / 7 5 0 k r f q 4 7 k / / 6 2 0 k 0 d b = g p c a l p i n 2 . 5 v , 2 0 d b ( a t 3 1 5 h z , 3 d b v ) s e t t i n g 2 r g l o p e n r g h o p e n r g p 3 6 k / / 1 1 0 k r f m 3 0 0 k r f / q 4 7 k / / 7 5 0 k r f q 4 7 k / / 6 2 0 k f p p e a k i n g f r e q u e n c y v s . f p c a l p i n v o l t a g e f p c a l p i n v o l t a g e [ v ] f p p e a k i n g f r e q u e n c y v a r i a t i o n r a t i o [ % ] 6 0 1 4 0 2 2 0 1 0 0 1 8 0 2 0 v c c , v e e = 7 v f p p e a k i n g f r e q u e n c y 1 0 0 % w h e n f p c a l p i n i s 2 . 5 v r g l o p e n r g h o p e n r g p 3 6 k / / 1 1 0 k r f m 3 0 0 k r f / q 4 7 k / / 7 5 0 k r f q 4 7 k / / 6 2 0 k 2 . 0 1 . 0 4 . 0 7 . 0 1 . 0 0 . 0 2 . 0 3 . 0 5 . 0 6 . 0 2 . 0 1 . 0 4 . 0 7 . 0 1 . 0 0 . 0 2 . 0 3 . 0 5 . 0 6 . 0 s e t t i n g 1 s e t t i n g 2 v c c , v e e = 7 v s e t t i n g 1 r g l 3 6 k / / 5 1 0 k r g h 6 2 k / / 2 2 0 k r g p 3 6 k / / 1 1 0 k r f m 3 9 k / / 9 1 0 k r f / q 4 7 k / / 7 5 0 k r f q 4 7 k / / 6 2 0 k 0 d b = g h c a l p i n 2 . 5 v , 2 0 d b ( a t 3 1 5 h z , 3 d b v ) s e t t i n g 2 r g l o p e n r g h 6 2 k / / 2 2 0 k r g p o p e n r f m 3 0 0 k r f / q 1 8 k r f q 1 2 k v c c , v e e = 7 v s e t t i n g 1 s e t t i n g 2 3 k h z 8 k h z 1 2 k h z 3 k h z
? 25 cxa1598m/s r e c c a l a n d g h c a l f r e q u e n c y r e s p o n s e f r e q u e n c y [ h z ] o u t p u t r e s p o n s e [ d b ] 1 0 0 2 0 3 0 1 0 0 k 1 0 1 0 v c c , v e e = 7 v 0 d b = 3 1 5 h z , 2 3 d b v ( 2 0 d b ) , r e c c a l , g h c a l , g p c a l , f p c a l = 2 . 5 v 1 0 k 1 k 1 0 0 5 . 0 v f 1 f 2 f 3 2 . 5 v f 4 f 5 f 6 0 . 0 v f 7 f 8 f 9 5 . 0 v 2 . 5 v 0 . 0 v r e c c a l g h c a l f 1 f 4 f 7 f 3 f 6 f 9 f 5 f 2 f 8 r e c c a l a n d g p c a l f r e q u e n c y r e s p o n s e f r e q u e n c y [ h z ] o u t p u t r e s p o n s e [ d b ] 1 0 0 2 0 3 0 1 0 0 k 1 0 1 0 v c c , v e e = 7 v 0 d b = 3 1 5 h z , 2 3 d b v ( 2 0 d b ) , r e c c a l , g h c a l , g p c a l , f p c a l = 2 . 5 v 1 0 k 1 k 1 0 0 5 . 0 v f 1 f 2 f 3 2 . 5 v f 4 f 5 f 6 0 . 0 v f 7 f 8 f 9 5 . 0 v 2 . 5 v 0 . 0 v r e c c a l g p c a l f 1 f 4 f 7 f 3 f 6 f 9 f 5 f 2 f 8 r e c c a l a n d f p c a l f r e q u e n c y r e s p o n s e f r e q u e n c y [ h z ] o u t p u t r e s p o n s e [ d b ] 1 0 0 2 0 3 0 1 0 0 k 1 0 1 0 1 0 k 1 k 1 0 0 5 . 0 v f 1 f 2 f 3 2 . 5 v f 4 f 5 f 6 0 . 0 v f 7 f 8 f 9 5 . 0 v 2 . 5 v 0 . 0 v r e c c a l f p c a l f 1 f 4 f 7 f 3 f 6 f 9 f 5 f 2 f 8 v c c , v e e = 7 v 0 d b = 3 1 5 h z , 2 3 d b v ( 2 0 d b ) , r e c c a l , g h c a l , g p c a l , f p c a l = 2 . 5 v
? 26 cxa1598m/s package outline unit: mm cxa1598m cxa1598s s o n y c o d e e i a j c o d e j e d e c c o d e m p a c k a g e s t r u c t u r e m o l d i n g c o m p o u n d l e a d t r e a t m e n t l e a d m a t e r i a l p a c k a g e w e i g h t e p o x y / p h e n o l r e s i n s o l d e r p l a t i n g c o p p e r a l l o y / 4 2 a l l o y 2 4 p i n s o p ( p l a s t i c ) 1 5 . 0 0 . 1 + 0 . 4 1 1 2 1 3 2 4 1 . 2 7 0 . 4 5 0 . 1 5 . 3 0 . 1 + 0 . 3 7 . 9 0 . 4 0 . 2 0 . 0 5 + 0 . 1 0 . 5 0 . 2 0 . 1 0 . 0 5 + 0 . 2 0 . 1 5 1 . 8 5 0 . 1 5 + 0 . 4 6 . 9 0 . 1 2 s o p - 2 4 p - l 0 1 * s o p 0 2 4 - p - 0 3 0 0 - a 0 . 3 g s o n y c o d e e i a j c o d e j e d e c c o d e p a c k a g e s t r u c t u r e m o l d i n g c o m p o u n d l e a d t r e a t m e n t l e a d m a t e r i a l p a c k a g e w e i g h t e p o x y r e s i n s o l d e r p l a t i n g c o p p e r a l l o y 2 2 p i n s d i p ( p l a s t i c ) s d i p - 2 2 p - 0 1 s d i p 0 2 2 - p - 0 3 0 0 0 . 9 5 g 1 . 7 7 8 1 1 1 2 1 2 2 1 9 . 2 0 . 1 + 0 . 4 7 . 6 2 6 . 4 0 . 1 + 0 . 3 0 . 2 5 0 . 0 5 + 0 . 1 0 t o 1 5 0 . 5 0 . 1 0 . 9 0 . 1 + 0 . 1 5 3 . 2 5 0 . 2 + 0 . 1 5 0 . 5 1 m i n 3 . 9 0 . 1 + 0 . 4


▲Up To Search▲   

 
Price & Availability of CXA1598MS

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X